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Abstract

The functional expansion tally (FET) is a method for constructing functional estimates of unknown tally distribu-

tions via Monte Carlo simulation. This technique uses a Monte Carlo calculation to estimate expansion coefficients of

the tally distribution with respect to a set of orthogonal basis functions. The rate at which the FET approximation con-

verges to the true distribution as the expansion order is increased is developed. For sufficiently smooth distributions the

FET is shown to converge faster, and achieve a lower residual error, than a histogram approximation.
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1. Introduction

Monte Carlo simulations are fundamentally nothing more than a stochastic numerical experiment. In
order to solve a particular problem with the Monte Carlo method, a user must set up a simulation of

the physical system under consideration. If the simulation accurately recreates the behavior of the system,

then the results of the simulation will be an estimate of the expected outcome of the system. Monte Carlo

methods are widely used in particle transport and radiation transport calculations [1–4] to study transport

processes within complex systems. In these applications, particles are sampled from a source distribution

defined over the problem geometry. A random walk for each particle is then simulated, based on the

physical properties of the system. Each particle is tracked until termination, typically through absorption

or leakage from the system.
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Typically, Monte Carlo particle transport simulations are performed to estimate a reaction rate in a gi-

ven volume or leakage rate across a given surface. Over the past 50 years a variety of statistical estimators

(tallies) for these quantities have been developed [1,3–7]. For example, by simply counting the number of

particles that pass through a region, an accurate estimate of the integrated flux (i.e. scalar flux) can be ob-

tained. Moreover, slight variations in this estimator lead to many other tallies, such as absorption tallies,
fission source tallies, and fission heating tallies. All of these variations are based on the product of a known

function (cross section, fission Q-function, etc.) against the particle flux or current distribution within a re-

gion. Due to the nature of the Monte Carlo method, these tallies have traditionally been limited for use in

estimating integral (i.e. region-averaged) quantities. There are, however, many situations where a higher

level of detail is desired. Instead of simply estimating the integral of the distribution, it is often useful to

also obtain an estimate for the shape of the distribution. Such situations are especially common in particle

transport calculations where the spatial and/or angular distributions of particle flux are often quantities of

interest.
In order to obtain higher order shape information from Monte Carlo simulations, such as the phase

space (energy, space, time, angle, etc.) dependence of a particle flux distribution, the traditional approach

has been to simply divide the phase space into bins and calculate an average over each bin, resulting in a

histogram approximation to the true tally distribution. If many bins are used in the histogram, such an ap-

proach can lead to large statistical uncertainties in the resulting approximation because each phase space

bin is sampled relatively few times.

An alternative approach is to use Monte Carlo to estimate functional expansion coefficients of the

true distribution with respect to some set of (usually orthogonal) basis functions. The set of expansion
coefficients can then be used to construct a continuous functional approximation of the true distribu-

tion. This technique, referred to as the ‘‘functional expansion technique’’ or ‘‘functional expansion

tally’’ (FET) offers several benefits over conventional histogram-style Monte Carlo tallies. The main

advantage is that every score in the region contributes to every expansion coefficient, yielding informa-

tion regarding the shape of the phase space distribution as well as its average value. Moreover, it is

possible to choose the basis functions such that the lowest order term preserves the integral quantity

over the region of interest, hence preserving the average value estimated by the conventional tallies.

Therefore, the FET extracts higher order information from the random walk than is possible with
traditional Monte Carlo tallies.

The FET was first proposed by Chadsey et al. [8] who demonstrated that a Monte Carlo simulation

can be used to estimate the spherical harmonic expansion coefficients of the angular distribution of

X-ray photoemission. Their results show that the use of a functional expansion representation of the

angular distribution has several advantages over a traditional discrete histogram approximation. One

advantage is that the estimated solution is a continuous function, which can be more convenient for

subsequent analysis. But more importantly the authors also claim, although no numerical results or for-

mal proof was presented, that the FET can offer ‘‘substantial variance reduction’’ if an appropriate set
of basis functions is used.

A follow up paper by Beers and Pine [9] generalized the FET for any Monte Carlo simulation. A detailed

mathematical formulation of the method was given for both expansions of the probability density of a ran-

dom variable and functions defined on a stochastic process. The applicability of these methods was dem-

onstrated for electron transport problems using Legendre polynomials and spherical harmonics as basis

sets. Subsequent studies have applied the FET to a variety of applications [10–20] but there has been a lack

of work regarding the convergence properties of the FET.

In this paper, we present a mathematical analysis of the convergence properties of the FET for Monte
Carlo calculations. This paper demonstrates that the FET can often provide a better approximation for the

shape of an unknown tally distribution than a traditional histogram tally. To achieve this result, we con-

sider the application of the FET and histogram approximations to the set of all continuous distributions



D.P. Griesheimer et al. / Journal of Computational Physics 211 (2006) 129–153 131
defined over an expansion domain. To quantify the accuracy of each approximation we use the 2-norm

measure of the residual error between the estimated tally and the true tally. For both the FET and histo-

gram tallies we show that the accuracy of the final approximation depends on two sources of error: trun-

cation and statistical.

Truncation error in the FET arises from approximating a function with a finite series expansion. The
magnitude of the truncation error is not affected by the number of histories used in the Monte Carlo sim-

ulation but, instead, depends only on the expansion order of the approximation. It should be noted that

truncation error also affects the histogram tally, due to approximating a continuous function with a series

of flat line segments.

Statistical error in both the FET and histogram tallies is due to the stochastic nature of the Monte Carlo

simulation. When functional expansion coefficients, tallied by Monte Carlo, are used to reconstruct a func-

tional approximation, the uncertainties in each ‘‘mode’’ combine and can cause significant contamination

of the final result.
To estimate expansion coefficients, the FET relies on the Monte Carlo random walk to perform a numer-

ical integration over the individual basis functions. For higher order expansion coefficients the corresponding

basis functions oscillate rapidly over the phase space andmay be difficult to integrate numerically. As a result,

the statistical uncertainty of individual expansion coefficients increases with the order of the coefficient.

Histogram tallies use Monte Carlo to numerically evaluate the integral of the distribution over small bins

that partition the tally domain. As the number of histogram bins increases, the width of each bin decreases,

resulting in fewer scores, and a larger variance, in each bin.

Both the FET and histogram tallies involve a tradeoff between sources of statistical and truncation
errors. Increasing the approximation order (or the number of histogram bins) will decrease the truncation

error but increase the statistical uncertainty of the approximation. Decreasing the approximation order will

have the opposite effect. In this paper we show that, for a fixed number of histories run, an optimal approx-

imation order exists, which minimizes the residual error of the approximation in the 2-norm. Furthermore,

we also show that the 2-norm error of the FET approximation is less than the corresponding error of the

histogram approximation, for large classes of general distribution shapes.
2. Foundation and derivation of the FET

Before beginning the actual derivation of the FET it is useful to consider an instructive example from

particle transport. Suppose we wish to estimate an integral of the form
Z
f ð~rÞ/ð~rÞd3r; ð1Þ
where /ð~rÞ is the scalar flux distribution over some volume V. If we use a Monte Carlo process to count

(i.e. sample) the number of particle interactions that occur within this volume, then it is useful to rewrite

Eq. (1) as
Z
f ð~rÞ/ð~rÞd3r ¼

Z
f ð~rÞ
Rð~rÞRð~rÞ/ð~rÞd

3r; ð2Þ
where Rð~rÞ is the total cross section in V. The factor Rð~rÞ/ð~rÞ inside the integral in Eq. (2) gives the reaction

rate of particles within the volume. This reaction rate can be converted into a probability distribution func-

tion by normalizing by the total number of reactions within V
P ð~rÞ ¼ Rð~rÞ/ð~rÞR
f ð~rÞ/ð~rÞd3r

. ð3Þ
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Eq. (3) expresses the probability P ð~rÞd3r that a particle interaction within the volume V will occur in d3r

about position~r. This result can be used to rewrite Eq. (2) as
Z
f ð~rÞ/ð~rÞd3r ¼

Z
~f ð~rÞP ð~rÞd3r; ð4Þ
where
~f ð~rÞ ¼ f ð~rÞ
Rð~rÞ

Z
f ð~rÞ/ð~rÞd3r

� �
. ð5Þ
From Eq. (4) we see that all of the information about the shape of the flux is captured in P ð~rÞ, the prob-

ability density function (pdf) for particle interaction locations in the volume. While we still have no a

priori information about the shape of Pð~rÞ, it is easily sampled during a Monte Carlo simulation. In fact,

every particle interaction that occurs in V during the simulation provides a valid sample from P ð~rÞ.
Given this example, it is important to stress that the results presented in this paper are not limited to

particle or radiation transport applications. Indeed, an approach similar to that presented above can be

used to show that a pdf P(x) can be defined to capture the functional dependence of any quantity T(x) that
we wish to investigate. For subsequent analysis, we assume that the distribution of T(x) is not known a

priori and that we wish to estimate its higher order properties from a set of independent realizations of

T(x) obtained during a Monte Carlo simulation. For the remainder of this paper, we will work with the

associated pdf P(x), rather than T(x), for convenience in our error and convergence analysis.

It is important to recognize that the distribution P(x) is never directly sampled (or resampled) by con-

ventional sampling methods during the Monte Carlo process. Rather, this pdf describes the probability that

certain types of random events will occur at specific phase locations during the Monte Carlo simulation.

Thus the Monte Carlo algorithm naturally produces samples from P(x) (i.e. the positions of events that
actually occur) as the simulation progresses. In essence, a Monte Carlo simulation can be viewed as a com-

plex sampling algorithm for obtaining realizations from some physically meaningful distribution P(x). It is

the goal of the FET to reconstruct information about P(x) from the individual samples produced during the

simulation.

It is worth noting that the reconstruction of an unknown pdf from individual samples has long been a

broad area of research in the field of statistics. A large body of research on techniques such as kernel

density estimation (KDE) is widely available in the literature [21,22]. Many of these statistical techniques

employ a nonparametric approach to obtain a best fit without guidance (or constraints) from the under-
lying physics that govern the process. While there is some overlap between the KDE method and the

FET, we specifically wish to narrow our focus to consider those results that are most applicable to Monte

Carlo tallies. In many cases, developing a specific functional expansion tally (e.g. defining a tally domain

and choosing a tailored set of basis functions) in order to preserve some physical properties of the actual

distribution will result in a more accurate and robust solution than is possible with other statistical recon-

struction techniques.
2.1. Derivation of the FET estimators

We begin the derivation of the FET by considering an accurate Monte Carlo algorithm that produces

independent realizations of a random variable x from a probability density function P(x). The traditional

approach for obtaining shape information for P(x) is to divide the domain of the random variable into

‘‘bins’’, b = {1,2, . . .,M}, and then count the number of events that occur in each bin, Nb, during the sim-

ulation. The total score in a bin, Nb , divided by the number of independent trials, N, is an unbiased esti-

mator for the probability that a given realization will fall within the bin,
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E
Nb

N

� �
¼ Pðxb�1 6 x < xbÞ; ð6Þ
where xb� 1 and xb denote the bounds of bin b. When this process is repeated for all of the bins, the result is

a histogram approximation to the actual pdf,
P ðxÞ ¼
XM
b¼1

P hist
M ;bðxÞ þO½Dxb�

� �
; ð7Þ
where
P hist
M ;bðxÞ ¼

P ðxb�1 6 x < xbÞ
Dxb

; ð8Þ
Dxb is the width of bin b, and P hist
M ;bðxÞ is the true value of the histogram in bin b. As the number of bins,M, is

increased, the truncation error decreases and the histogram approximation converges to the continuous

distribution.

In the FET the unknown pdf P(x) is represented as a series expansion in a complete set of basis func-

tions. The set of independent samples from P(x) are then used to estimate the coefficients of the expansion.

To show this, let fwng
1
0 be a complete orthogonal set with respect to a weighting function q in L2

qðCÞ, the
space of all square integrable functions over some bounded domain C. It then follows that any P ðxÞ 2 L2

qðCÞ
can be written as
P ðxÞ ¼
X1
n¼0

�anknwnðxÞ; ð9Þ
where �an is the true nth expansion coefficient defined by the inner-product,
�an ¼
Z
C
wnðxÞqðxÞP ðxÞdx; ð10Þ
and kn is the normalization constant for the nth basis function [23],
kn ¼
1

kwnk
2
. ð11Þ
In order to create a functional approximation to P(x) using Eq. (9), the expansion coefficients �an must
first be determined. The coefficients are calculated using Eq. (10), a convenient integral that is ideal for esti-

mation by Monte Carlo methods. In fact, it is easily shown that the sample statistic
ân ¼
1

N

XN
i¼1

wnðxiÞqðxiÞ ð12Þ
is an unbiased analog estimator for the true expansion coefficient �an [9,10].
3. Variance of the FET estimator

3.1. Variance of individual coefficients

It was established in the previous section (Eq. (10)) that the true expansion coefficient �an is actually the

expected value of the function an = wn(x)q(x),
�an ¼ E wnðxÞqðxÞ½ � ¼
Z
C
wnðxÞqðxÞP ðxÞdx. ð13Þ
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From Eq. (13) it is straightforward to calculate the variance of an(x),
r2
an
¼ E wnðxÞqðxÞð Þ2

h i
� E wnðxÞqðxÞ½ �2 ¼

Z
C

wnðxÞqðxÞð Þ2PðxÞdx� �a2n. ð14Þ
The true variance for an estimate of �an made with N independent trials can now be written in terms of the

true variance given in Eq. (14):
r2
ân
¼ 1

N
r2
an
. ð15Þ
Eqs. (14) and (15) give an analytic form for the true variance of expansion coefficients estimated by a Monte

Carlo calculation. The sample variance of Eq. (15) provides an unbiased estimator of r2
ân

and can be cal-

culated in the usual way,
r̂2
ân
¼
PN

i¼1 wnðxiÞqðxiÞð Þ2 � 1
N

PN
i¼1wnðxiÞqðxiÞ

� �2
N N � 1ð Þ . ð16Þ
Eq. (16) gives a measurement of the statistical uncertainty in each individual expansion coefficient.

3.2. Variance of the functional expansion

It is also possible to derive a more powerful and useful result that gives the pointwise variance of the

reconstructed functional estimate rather than the individual coefficients. The derivation begins by consid-

ering a functional expansion of the distribution in some orthogonal basis set of functions,
P ðxÞ ¼
XM
n¼0

anknwnðxÞ. ð17Þ
As shown in Eq. (7), any set of N independently observed events can be used to estimate any or all mem-

bers of the set of expansion coefficients f�ang10 . Therefore, a single history i provides an estimate ân;i,
ân;i ¼ wnðxiÞqðxiÞ ð18Þ

for every expansion coefficient in the set f�an;igM0 . This set of expansion coefficients can, in turn, be used in

Eq. (17) to produce a single history estimate for the function P(x) itself. At this point, it is useful to define a

new quantity, dPM ;iðxÞ, that represents anMth order estimate of the function P(x) resulting from only the ith

observed event,
dPM ;iðxÞ ¼
XM
n¼0

ân;iknwnðxÞ. ð19Þ
Taking the average of the dPM ;iðxÞ over N observations yields an intermediate result,
cPM ðxÞ ¼
1

N

XN
i¼1

dPM ;iðxÞ ¼
1

N

XN
i¼1

XM
n¼0

ân;iknwnðxÞ; ð20Þ
which can be simplified to yield
cPM ðxÞ ¼
XM
n¼0

knwnðxÞ
1

N

XN
i¼1

ân;i

 !
¼
XM
n¼0

ânknwnðxÞ. ð21Þ
Eq. (21) gives the expected result, in which the mean functional expansion cPM ðxÞ for N independent trials is
equal to the functional expansion that uses the sample mean for each expansion coefficient individually.
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A more interesting result occurs when the sample variance formula is applied to N independent realiza-

tions of dPM ;iðxÞ,
r̂2cPM

ðxÞ ¼
PN

i¼1
dPM ;iðxÞ
� �2

� N cPM ðxÞ
� �2

N N � 1ð Þ . ð22Þ
Eq. (22) can be algebraically manipulated to give the final result,
r̂2cPM

ðxÞ ¼
PN

i¼1

PM
n¼0ân;iknwnðxÞ

� �2 �N
PM

n¼0ânknwnðxÞ
� �2

N N � 1ð Þ

¼
PN

i¼1

PM
n¼0

PM
m¼0 ân;iknwnðxÞð Þ âm;ikmwmðxÞð Þ

� �
�N

PM
n¼0

PM
m¼0 ânknwnðxÞð Þ âmkmwmðxÞð Þ

� �
N N � 1ð Þ

¼ 1

N � 1

XM
n¼0

XM
m¼0

knwnðxÞð Þ kmwmðxÞð Þ 1
N

XN
i¼1

ân;iâm;ið Þ� 1

N � 1

XM
n¼0

XM
m¼0

ânâmð Þ knwnðxÞð Þ kmwmðxÞð Þ
 !

¼ 1

N � 1

XM
n¼0

XM
m¼0

knwnðxÞð Þ kmwmðxÞð Þ dan;iam;i � 1

N � 1

XM
n¼0

XM
m¼0

ânâmð Þ knwnðxÞð Þ kmwmðxÞð Þ
 !

¼ 1

N � 1

XM
n¼0

XM
m¼0

dan;iam;i � ânâmð Þ knwnðxÞð Þ kmwmðxÞð Þ

r̂2cPM

ðxÞ ¼ N
N � 1

XM
n¼0

XM
m¼0

r̂anam knwnðxÞð Þ kmwmðxÞð Þ; ð23Þ
where r̂anam is, by definition, the sample covariance between estimates of ân and âm.
Eq. (23) gives the variance (as a function of x) for the estimated functional expansion of the distribution.

Unfortunately, this equation for the variance requires the covariance between every combination of expan-
sion coefficients to be calculated. Computing the covariance matrix for a large number of expansion coef-

ficients can increase the memory requirements and run time of a Monte Carlo simulation. To prevent this

burden on the code, it is useful to consider an estimate for the 2-norm of this functional variance.
3.3. Two-norm variance of the functional expansion

The derivation of the 2-norm variance estimate begins with the sample variance for cPM ðxÞ, given in Eq.

(22). By expanding, integrating both sides over C, and using the orthogonal properties of the basis set
fwng

M
0 , Eq. (22) can be manipulated to give,
Z

C
r̂2cPM

ðxÞqðxÞdx

¼
R
C

PN
i¼1

PM
n¼0

PM
m¼0 ân;iknwnðxÞð Þ âm;ikmwmðxÞð Þ

� �
qðxÞ �

R
C N

PM
n¼0

PM
m¼0 ânknwnðxÞð Þ âmkmwmðxÞð Þ

� �
qðxÞ

N N � 1ð Þ

¼
PN

i¼1

PM
n¼0â

2
n;ikn

� �
� N

PM
n¼0â

2
nkn

� �
N N � 1ð Þ ¼ 1

ðN � 1Þ
XM
n¼0

1

N

XN
i¼1

â2n;ikn

 !
� 1

N � 1

XM
n¼0

â2nkn

 !

¼ 1

ðN � 1Þ
XM
n¼0

ca2n;i � â2n
� �

kn;
which, in turn, can be simplified to yield
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Z
C
r̂2cPM

ðxÞqðxÞdx ¼
XM
n¼0

r̂2
ân
kn. ð24Þ
Eq. (24) gives an estimate of the statistical uncertainty in the entire functional expansion based only on the
uncertainties in each of the individual expansion coefficients. Integrating Eq. (22), in effect, causes the

covariance term to drop out of the equation, greatly simplifying the sample variance formula.
4. Theoretical convergence properties of the FET

Having established that Monte Carlo can be used to calculate a functional approximation to an un-

known probability distribution, we now examine the accuracy of such an approach.

4.1. Truncation error

The functional expansion for P(x) given in Eq. (9) is exact only if all terms in the series are included.

Clearly it is not possible to estimate an infinite number of expansion coefficients and the functional approx-

imation must be truncated at some finite number of terms M,
P ðxÞ � PMðxÞ ¼
XM
n¼0

�anknwnðxÞ. ð25Þ
This truncation after M terms introduces an error EM(x) in the estimation of P(x) that is equal to the con-

tributions from all expansion terms with n > M,
EMðxÞ ¼ PðxÞ � PMðxÞð Þ ¼
X1

n¼Mþ1

�anknwnðxÞ. ð26Þ
By Parseval�s theorem [23], the rate at which the truncation error decreases is directly related to the rate at

which the coefficients j�anj go to zero. For non-analytic functions the expansion coefficients demonstrate alge-
braic convergence at a rate determined by j, the algebraic index of convergence for the function P(x) [24],
j�anj ¼ O
1

nj

� �
. ð27Þ
The algebraic index of convergence is a constant value that depends on the smoothness of the function.

For many common basis sets (e.g. Fourier, Chebyshev, and Legendre) the value of j for a function is equal

to the number of derivatives of the function that are square integrable. For analytic functions, the index of

convergence is infinite and the expansion coefficients can converge exponentially fast. Further information

on the convergence behavior for expansion coefficients in functional series approximations is widely avail-

able in many textbooks [23–25].

4.2. Statistical error

Another source of error in the FET arises from statistical uncertainty in the expansion coefficients. It is

convenient to use the 2-norm to measure the total error between a stochastic FET approximation and the

true function P(x),
kÊMk ¼ kP ðxÞ � P̂M ;N ðxÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
C

P ðxÞ � P̂M ;N ðxÞ
� �2

qðxÞdx
s

; ð28Þ
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where P̂M ;N ðxÞ is the Monte Carlo estimate of the Mth order functional expansion approximation to P(x)

calculated using N independent particle histories. Eq. (28) can be rewritten as
kÊMk2 ¼
Z
C

X1
n¼0

kn�anwnðxÞ �
XM
n¼0

knânwnðxÞ
 !2

qðxÞdx

¼
Z
C

X1
n¼Mþ1

kn�anwnðxÞ þ
XM
n¼0

kn �an � ânð ÞwnðxÞ
 !2

qðxÞdx. ð29Þ
The right hand side of Eq. (29) can be expanded to yield
kÊMk2 ¼
Z
C

X1
n¼Mþ1

X1
m¼Mþ1

knkm�an�amwnðxÞwmðxÞ
 !

qðxÞdx

þ
Z
C

XM
n¼0

XM
m¼0

knkm �an � ânð Þ �am � âmð ÞwnðxÞwmðxÞ
 !

qðxÞdx

þ
Z
C
2

X1
n¼Mþ1

XM
m¼0

knkm�an �am � âmð ÞwnðxÞwmðxÞ
 !

qðxÞdx. ð30Þ
Using the orthogonality property of the basis functions, the integrals in Eq. (30) can be reduced to
kÊMk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

�a2nkn

 !
þ

XM
n¼0

�an � ânð Þ2kn

 !vuut . ð31Þ
The first term under the radical in Eq. (31) is the truncation error due to approximating a continuous func-

tion with a finite series expansion. The second term gives the contribution to the total error due to statistical

uncertainty in the expansion coefficients.

Eq. (31) demonstrates that the FET contains sources of both statistical error and truncation error. The

presence of statistical uncertainty in Eq. (31) means that kÊMk is itself a random variable. Therefore, in

order to analyze the convergence behavior of the FET we should consider the root-mean-square (RMS)

error for simulations using N independent histories. The RMS error can be calculated directly from Eq.

(31),
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊMk2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

�a2nkn

 !
þ

XM
n¼0

�an � ânð Þ2kn

* +vuut ; ð32Þ
where angle brackets Ææ have been used to denote the expected value of a statistical quantity.

First, we will evaluate the statistical uncertainty term. Algebraically expanding and applying the expec-
tation operator to each term in the summation yields,
XM
n¼0

�an � ânð Þ2kn

* +
¼

XM
n¼0

â2n

 �

kn � �a2nkn

 !
. ð33Þ
By the definition of the variance of ân,
â2n

 �

¼ r2
ân
þ �a2n. ð34Þ
Substituting Eq. (34) into Eq. (33) shows that the statistical error in the functional approximation is related
to the sum of the variances of the individual expansion coefficients,
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XM
n¼0

�an � ânð Þ2kn

* +
¼
XM
n¼0

knr2
ân
. ð35Þ
Using Eqs. (14) and (35) the statistical uncertainty term can be written as
XM
n¼0

�an � ânð Þ2kn

* +
¼
XM
n¼0

kn
N

Z
C

wnðxÞqðxÞð Þ2P ðxÞdx� �a2n

� �
; ð36Þ
and so
 XM
n¼0

�an � ânð Þ2kn

* +
6

XM
n¼0

kn
N

Max
C

jqðxÞP ðxÞjð Þ
Z
C
w2

nðxÞqðxÞdx� �a2n

� �
. ð37Þ
It should be noted that Eq. (37) is only valid if the function jq(x)P(x)j is finite over the domain C. In cases

where jq(x)P(x)j is unbounded, special care may need to be taken to ensure that the technique will behave

as expected.

Using the definition of kn from Eq. (11) in Eq. (37) yields
XM
n¼0

�an � ânð Þ2kn

* +
6

1

N

XM
n¼0

Max
C

jqðxÞP ðxÞjð Þ � �a2nkn
h i

;

and so
 XM
n¼0

�an � ânð Þ2kn

* +
6

M
N

Max
C

jqðxÞP ðxÞjð Þ � 1

N

XM
n¼0

�a2nkn. ð38Þ
Further inspection of Eq. (38) reveals that the second term on the right hand side is always negative and can
therefore be omitted without affecting the inequality. With this simplification Eq. (38) can be written
XM

n¼0

�an � ânð Þ2kn

* +
6

M
N

Max
C

jqðxÞP ðxÞjð Þ ðexpected statistical errorÞ. ð39Þ
Next, we evaluate the truncation error term from Eq. (31) using the convergence rate of the expansion

coefficients given in Eq. (27),
X1
n¼Mþ1

�a2nkn ¼
X1

n¼Mþ1

O
1

n2j

� �
kn ðtruncation errorÞ. ð40Þ
Finally, the results from Eqs. (39) and (40) can then be used to rewrite Eq. (31) as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊMk2
D Er

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
N

Max
C

jqðxÞP ðxÞjð Þ þ
X1

n¼Mþ1

O
1

n2j

� �
kn

s
. ð41Þ
The detailed convergence behavior of Eq. (41) depends on both j for the function P(x) and the behavior of

the series {kn}.

The expression for the total (statistical + truncation) error can be written, to leading orders, as,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊMk2
D Er

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

M
N

� �
þ
X1

n¼Mþ1

O
1

n2j

� �
kn

s
. ð42Þ
Eq. (42) demonstrates that the rate of convergence is determined not only by the smoothness of the function

P(x), but also by the ratio of the expansion order M to the number of histories run N. This divergent term
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indicates that, for a fixed number of histories N, the total error in the approximation will begin to grow as

more expansion orders are added.

4.3. Optimizing the FET approximation

Eq. (42) illustrates that the truncation error and statistical error terms in the FET are inversely related.

The low order expansion coefficients are the easiest to integrate stochastically and will have smaller statis-

tical uncertainties. However, using too few expansion coefficients will result in a large truncation error and

low resolution. Using a higher order series expansion will decrease the truncation error, but higher expan-

sion coefficients will always have larger statistical uncertainties because the basis functions are more difficult

to integrate. Keeping too many, or poorly converged, coefficients will result in statistical error ‘‘contami-

nation’’ of the final approximation. In order to obtain the maximum effectiveness from the FET, an optimal

balance must be found between these two terms that will minimize the total error in the approximation.
Examination of Eqs. (32) and (35) shows, for each additional coefficient ân included in the series, the

truncation error is reduced by â2n and the statistical error is increased by r̂2
ân
kn. Taking the ratio of the

increase in statistical error to the decrease in truncation error,
R2
n ¼

r̂2
ân
kn

â2n
; ð43Þ
gives a relative cost-to-benefit metric associated with adding the nth term to the series. Note that
ffiffiffiffiffi
R2
n

q
looks

similar to the relative standard deviation that is widely used for standard Monte Carlo tallies; the two met-

rics differ only by a factor of
ffiffiffiffiffi
kn

p
.

This cost-to-benefit ratio provides a convenient test for determining how many expansion coefficients

should be used from a given Monte Carlo simulation. Terms with values of R2
n � 1 should not be included

in a functional approximation because they are not well converged and will not add any useful information

to the result. Terms with values of R2
n � 1, on the other hand, should be included in the series approxima-

tion because they provide valuable information about the shape of the true function. Terms with R2
n � 1 are

near the break even point and should be carefully examined before including any such term in a functional

approximation. Some numerical results demonstrating the behavior of the cost-to-benefit ratio will be

presented in the next section.
5. Numerical verification of FET convergence

We now present a series of numerical experiments designed to verify the theoretical convergence rate of

the FET given in Eq. (42). In these experiments Monte Carlo simulations were used to estimate Legendre

functional approximations to an arbitrarily chosen distribution for P(x). The 2-norm of the residual error

between the functional approximation and the exact distribution of P(x) was then calculated for different

expansion orders and numbers of histories.

The same trial distribution for P(x) was used in each numerical experiment,
P ðxÞ ¼ 1

1.51985

cosðxÞe2xþ1; x 2 ½�1;�1=2�;
cosðxÞ; x 2 ½�1=2; 1=2�;
cosðxÞe�x=2þ1=4; x 2 ½1=2; 1�.

8><>: ð44Þ
The distribution in Eq. (44) was chosen to reproduce many of the minimum requirements of distributions

encountered during many Monte Carlo simulations. The distribution is continuous over the domain (�1,1)

and piecewise smooth with discontinuities in the first derivative of the distribution occurring at x = ±1/2.
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Fig. 1. Plot of reference distribution of P(x) used for numerical verification of theoretical convergence results for the FET.
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Because P(x) is piecewise smooth it has two integrable derivatives and, therefore, an algebraic index of con-

vergence j = 2. A plot of the reference distribution is shown in Fig. 1.

5.1. Analytical FET approximation results

For testing purposes, functional approximations of P(x) in the set of Legendre polynomials were con-

sidered. The Legendre polynomials are a complete set of basis functions that are orthogonal over the range

[�1,1] with respect to the weighting function q(x) = 1. The normalization constants for the Legendre poly-

nomials are
Fig. 2

compa
kn ¼
2nþ 1

2
. ð45Þ
For comparative purposes the exact Legendre expansion coefficients for P(x) were calculated using Eq.

(10). A plot of the absolute values of the first 50 exact expansion coefficients is shown in Fig. 2. In the der-

ivation of the convergence properties of the FET it was established in Eq. (27) that the expansion coeffi-
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. Exact Legendre expansion coefficients for P(x) plotted against Legendre expansion order. A 1/n2.5 trend line is shown for

rative purposes, indicating the convergence rate of the expansion coefficients.
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cients should converge algebraically with an asymptotic bound of O[n�j]. Numerical results, shown in Fig.

2, give the index of convergence for P(x) as j � 2.5, slightly faster than the j = 2 bound for a piecewise

smooth function.

It was also established that the truncation error for a finite Legendre series approximation will converge

as the expansion coefficients tend to zero. By using the result given in Eq. (40), the truncation error can be
written concisely as
Fig. 3.

order.
kEMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

�a2nkn

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

O
1

n2j

� �
kn

s
. ð46Þ
For the reference distribution of P(x) in the set of Legendre polynomials, Eq. (46) predicts that the trun-
cation error should converge at least as fast as
kEMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

O
1

n5

� �
2nþ 1

2

s
6 O

1ffiffiffiffiffiffiffi
M3

p
� �

. ð47Þ
To demonstrate this convergence behavior, the exact Legendre expansion coefficients were used to con-
struct functional approximations to P(x) for values of M ranging from 0 to 49. For each order of exact

functional approximation, the 2-norm truncation error was calculated directly by
kEMk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1

P ðxÞ � PMðxÞð Þ2dx

s
. ð48Þ
The results, Fig. 3, show that the truncation error converges at the rate O½1=
ffiffiffiffiffiffiffi
M3

p
�, as expected. These

results verify that a Legendre expansion of the reference distribution has the convergence properties pre-

dicted by the classical results for such expansions and provides a measured value for the algebraic index

of convergence j.

5.2. Stochastic FET approximation results

Additional studies were conducted to examine the convergence properties of a Legendre approximation
to P(x) that uses stochastically estimated expansion coefficients. For these studies, random samples were
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Two norm measure of truncation error for a Legendre expansion approximation of P(x) plotted against Legendre truncation

A 1/M3/2 trend line is shown for comparative purposes, indicating the approximate convergence rate.
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taken (via rejection sampling) from the distribution P(x), given in Eq. (44). These samples were then used in

Eq. (12) to estimate the Legendre expansion coefficients for P(x).

In the previous section it was shown, Eq. (34), that the expected statistical error in a Monte Carlo esti-

mate of an expansion coefficient is proportional to the true variance of ân, or
jân � �anjh i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Z
C

wnðxÞqðxÞð Þ2PðxÞdx� �a2n

� �s
. ð49Þ
Eq. (49) can be further simplified by using Eq. (37), to yield
jân � �anjh i 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Max
C

jqðxÞPðxÞjð Þ
kn

� �a2n

 !vuut . ð50Þ
For the trial distribution of P(x) and the basis set of Legendre polynomials, Eq. (50) can be evaluated

directly,
jân � �anjh i 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1.3159

2nþ 1
� �a2n

� �s
. ð51Þ
For a fixed sample size N and large values of n, Eq. (51) behaves, to leading order, as
jân � �anjh i 6 O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nþ 1

r" #
. ð52Þ
It was previously established in Eq. (27) that the true expansion coefficients j�anj will converge with order

O[1/n2.5]. Thus, for large n, the true expansion coefficients �an will be very close to zero, and statistical error

will dominate the convergence rate of the stochastically estimated expansion coefficients. Substituting the

approximation �an ¼ 0 (for large n) into Eq. (52) gives
jânjh i 6 O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nþ 1

r" #
ð53Þ
as the convergence rate for stochastically estimated coefficients. To test this convergence rate the first 1000

expansion coefficients for P(x) were estimated in a 10,000 history Monte Carlo simulation. The results,

given in Fig. 4, show that the absolute value of the statistical error in the expansion coefficients converges

as O½1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
�. This agrees with the predicted behavior given in Eq. (52).

Theoretical results predict that the total error in a stochastic FET approximation to P(x) will behave

as the sum of two independent terms: the truncation error, which will converge as the expansion order

increases; and the statistical error, which is divergent with increasing expansion order for a constant

sample size. The general form for the 2-norm measure of residual error was given in Eq. (42).
For the trial distribution of P(x) the expected convergence rate can be evaluated using Eqs. (42)

and (47),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊMk2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

M
N

� �
þO

1ffiffiffiffiffiffiffi
M3

p
� �s

. ð54Þ
To verify this convergence behavior, a 10,000 history Monte Carlo simulation was used to estimate the first

1000 Legendre expansion coefficients. These expansion coefficients were used to construct functional

approximations with orders from 0 to 1000. For each order of functional approximation, the exact 2-norm

error was calculated directly from Eq. (48).
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Fig. 4. Monte Carlo estimated Legendre expansion coefficients for P(x) plotted against Legendre expansion order. Each expansion

coefficient was estimated using the same 10,000 history random walk process. A 1/(2n + 1)1/2 trend line is shown for comparative

purposes, indicating the theoretical convergence rate.
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The results, given in Fig. 5, show that there is an optimal expansion order that minimizes the residual

error of the approximation. This optimal order, which is around 9 for this test problem, is the point where

the statistical uncertainty in the expansion coefficients begins to contaminate the approximation. Below this

optimal order, each added expansion term improves the functional approximation by reducing the trunca-

tion error of the series expansion. Above the optimal expansion order, the residual error begins to diverge

at the O[M/N] rate predicted by Eq. (54) (or the equivalent Eq. (42)). The optimal expansion order also

depends on the number of histories used in the Monte Carlo simulation. As more histories are used, the
uncertainty associated with all of the coefficients is reduced, allowing more terms to be included in an

expansion without contaminating the overall solution. Thus, as the number of histories in the simulation

is increased the optimal value will begin to shift towards larger values, and the minimum total error will

decrease. This behavior is illustrated in Fig. 6.

5.3. Estimating the optimal expansion order

The results shown in Fig. 6 demonstrate that for every simulation there exists an optimal order FET
expansion that gives the highest accuracy (in the 2-norm) approximation. In the benchmark problem
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Fig. 5. Two norm measure of total error for a stochastic Legendre expansion approximation to plotted P(x) against Legendre

truncation order. Each expansion coefficient was estimated using the same N = 10,000 history random walk process.
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considered it is easy to identify this minimum by calculating the exact error for different order expansions

and then finding the minimum. In a practical application, however, such an approach is obviously not pos-

sible. What is needed is a metric that would allow the user to decide which coefficients should be used in an

expansion and which should be discarded. Such a metric was derived in the previous section. This metric,

referred to as the cost to benefit ratio R2
n, is defined to be the statistical error ‘‘cost’’ divided by the trun-

cation error ‘‘benefit’’ due to a single coefficient. This provides a computationally simple method to assess

whether a given coefficient will provide an increase in accuracy if it is included in the functional expansion.

Theoretically, any coefficient with R2
n 6 1 should be included in an expansion, while those with R2

n � 1

should be excluded. For the benchmark problem described above, the cost to benefit ratio was calculated

for each expansion coefficient. The results are shown in Fig. 7. We notice that many of the expansion coef-

ficients with order <9 have values of R2
n < 10, while the higher order coefficients have ratios >10. Unfortu-

nately, because the cost to benefit ratio involves stochastic quantities, it cannot be used to exactly identify

the optimal expansion order, but it does provide valuable information about the optimal order. One pos-
sible use of the cost to benefit ratio is to use it as a filter to automatically select which coefficients will be
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Fig. 7. Cost-to-benefit ratio for estimated Legendre expansion coefficients for P(x) plotted against coefficient order. Each expansion

coefficient was estimated using the same 10,000 history random walk process.
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Legendre approximation was produced by discarding all expansion coefficients withR2
n

included in the final approximation. This could be implemented by defining an R2
n threshold value in the

Monte Carlo code. During post-processing any coefficients with a value of R2
n greater than the threshold

would then be discarded.

To test this approach, a filtering algorithm was implemented in the test version of MCNP4c and used to

produce a filtered FET approximation for the benchmark problem. The resulting approximation (generated
with an R2

n threshold of 2.0) does a very good job of minimizing the total 2-norm error, as shown in Fig. 8.

Notice, however, that the filtered approximation is truncated at 6th order, where the ‘‘best’’ approximation

should be 9th order, according to Fig. 5. Still, the filtered approximation comes within 0.002 of the mini-

mum error for the unfiltered approximation. This is an outstanding result, considering that no prior knowl-

edge of the true solution shape is required. In practice, the FET can be configured to always estimate a large

number of coefficients, and then filtering can be used to ensure a good approximation for the number of

histories run. Conversely, an expansion order can be specified by the user and then the simulation can

be left to run until all coefficients below that order meet the R2
n threshold. While the results of filtering

can be adjusted slightly by changing the R2
n threshold value, the method appears to be relatively insensitive

to values below 10. Repeated trials have shown that threshold values between 1 and 3 usually produce the

best results.
6. Theoretical convergence of the histogram approximation

6.1. Truncation error in the histogram

With the convergence properties of the FET established, we turn our attention to the convergence of

the traditional histogram approximation. With conventional Monte Carlo, if one wants more informa-

tion regarding the shape of an unknown distribution, the variable of interest is divided into bins and

the random walk process is used to estimate the quantity integrated over each bin. This process results

in an estimate of the histogram-style approximation to the function P(x) that has the piecewise form (in

1-dimension)
P hist
M ðxÞ ¼ 1

xb � xb�1

Z xb

xb�1

P ðxÞdx 8x 2 xb�1; xb½ �. ð55Þ
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In Eq. (55) the set {x0,x1, . . .,xM� 1,xM} represents the bin boundaries for an M bin histogram, assuming

1-D for convenience. In order to simplify the following analysis, we assume that each bin of the histogram is

of equal width Dx. The 2-norm measure of the residual error between the true function and the best-fit

histogram approximation can be written
kEhist
M k ¼ kP ðxÞ � P hist

M ðxÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ xM

x0

P ðxÞ � P hist
M ðxÞ

� �2
qðxÞdx

s
. ð56Þ
Because the histogram approximation is constant over each bin, it is convenient to write the integral on the

right hand side of Eq. (56) as
kEhist
M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

Z xb

xb�1

P ðxÞ � P hist
M ;b

� �2
dx

vuut ; ð57Þ
where P hist
M ;b is the value of the bth histogram bin. By Taylor expanding P(x) about the midpoint of each bin

and simplifying, Eq. (57) yields, to leading order,
kEhist
M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

O½Dx3�

vuut . ð58Þ
Eq. (58) gives the truncation error of the approximation as a function of the bin width instead of the total

number of bins. For a bounded interval of length L divided into M equal bins, Dx is inversely proportional

to the number of bins,
Dx ¼ L
M

. ð59Þ
With this assumption, Eq. (58) can be rewritten in terms of the number of histogram bins used,
kEhist
M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

O
1

M3

� �vuut . ð60Þ
Since there are M bins, each with error O[1/M3] it follows immediately that the total truncation error is
kEhist
M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

1

M2

� �s
¼ O

1

M

� �
ðtruncation errorÞ. ð61Þ
A comparison of the FET and histogram truncation error convergence rates, Eqs. (40) and (61), demon-

strates that the FET will asymptotically converge to the correct distribution faster than a histogram

approximation in cases where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼Mþ1

O
kn
n2j

� �s
< O

1

M

� �
. ð62Þ
Evaluating the infinite series in the first term for M � 1 shows that Eq. (62) will hold as long as
kn
n2j

< o
1

n3

� �
. ð63Þ
The terms kn and j in Eqs. (62) and (63) illustrate that the convergence properties of the FET depend on
both the smoothness of the function P(x), as well as the set of basis functions chosen for the expansion. For



D.P. Griesheimer et al. / Journal of Computational Physics 211 (2006) 129–153 147
the case of a Legendre polynomial expansion of a probability distribution with j = 2.5, such as the example

shown in Section 5, Eq. (63) gives
kn
n2j

¼ 2nþ 1

2n5
¼ 1

n4
þ 1

2n5
< o

1

n3

� �
. ð64Þ
Eq. (64) indicates that the FET approximation will converge to the true distribution faster than a histogram

approximation. This implies that a functional expansion tally of order Mmay provide a more accurate esti-

mate of the true distribution than a histogram approximation with M bins.
It is important to note that Eq. (63) applies only to the asymptotic truncation error convergence rates for

the FET and histogram approximations. Convergence properties at low approximation orders do not nec-

essarily follow these asymptotic limits. As such, Eq. (63) should only be used as a rough guide for selecting

a tally method. Furthermore, Eq. (63) should only be used when a minimal amount of a priori information,

such as continuity or smoothness, is available for the unknown distribution. If more detailed information

about the distribution is known, then it may be possible to tailor an optimal tally, by either selecting a more

suitable set of orthogonal basis functions, in the case of the FET, or choosing a non-uniform set of bin

widths in the histogram method. Obviously the best possible scenario is to choose a basis set that fits
the unknown distribution exactly with the minimum number of terms.

6.2. Statistical error

When a histogram is created from a Monte Carlo calculation, each estimated bin height has some degree

of statistical uncertainty. The variance of each bin estimate is directly related to the number of histories that

score in that particular bin. This uncertainty can be accounted for in the analysis by including a random

noise term e in each bin of the histogram definition, Eq. (55),
dP hist
M ;b ¼

1

Dx

Z xb

xb�1

P ðxÞdxþ eb 8x 2 xb�1; xb½ �. ð65Þ
The e term is a zero-mean random variable [26] that describes the distribution of statistical error in the esti-
mate of P hist

M ðxÞ. Although the notation is slightly different, this analysis of statistical error is identical to

that used for the FET. A Taylor expansion of P(x) about the midpoint xb� 1/2 of a bin in Eq. (65) yields
P ðxÞ � dP hist
M ;b

� �
¼ eb �

P 00ðxb�1=2Þ
6

Dx2 þO½Dx4�. ð66Þ
The total error for the histogram approximation, including statistical uncertainty, can be written
kÊhist

M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

Z xb

xb�1

PðxÞ � dP hist
M ;b

� �2
dx

vuut . ð67Þ
Substituting Eq. (66) into Eq. (67) gives,
kÊhist

M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

Z xb

xb�1

eb �
P 00ðxb�1=2Þ

6
Dx2 �O½Dx4� þ P 0ðxb�1=2Þxþ

P 00ðxb�1=2Þ
2

x2 þO½x3�
� �2

dx

vuut . ð68Þ
Expanding Eq. (68) and integrating,
kÊhist

M k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

e2bDxþ
P 0ðxb�1=2Þ2Dx3

3
þO½Dx5�

vuut . ð69Þ
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Eq. (69) gives the 2-norm of the residual error in terms of eb, the statistical uncertainty in the estimate ofdP hist
M ;b . According to the Central Limit Theorem, this random variable will be normally distributed with mean

zero and variance r2cPhist
M ;b

. As with the FET analysis, the presence of statistical uncertainty in Eq. (69) means

that kÊhist

M k is a random variable. To proceed, we consider the RMS expected value of kÊhist

M k,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊhist

M k2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

e2bh iDxþ P 0ðxbþ1=2Þ2Dx3
3

þO½Dx5�

vuut . ð70Þ
Using the definition of r2cPhist
M ;b

for a random variable with a mean of zero, it is possible to express the

expected value of the statistical error squared as
e2b

 �

¼ r2cPhist
M ;b

. ð71Þ
Using Eq. (71) in Eq. (70) yields an intermediate form for the expected 2-norm error of the histogram

approximation, which contains the bin variance r2cPhist
M ;b

instead of a random noise term eb,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊhist

M k2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
b¼1

r2cPhist
M ;b

Dxþ P 0ðxb�1=2Þ2Dx3
3

þO½Dx5�

vuut . ð72Þ
The bin variance can be derived by recognizing that the estimator for dP hist
M ;b is simply the number of his-

tories that score in bin b, denoted Nb. For such a case it is easy to show that the relative uncertainty in each
bin obeys traditional counting statistics,
rcPhist
M ;bdP hist
M ;b

¼ 1ffiffiffiffiffiffi
Nb

p . ð73Þ
The expected number of counts in each bin is equal to the ratio of the integral over the bin to the integral

over all bins,
Nbh i ¼
R xb
xb�1

P ðxÞdxR xM
x0

P ðxÞdx
N . ð74Þ* +
Using Eqs. (73) and (74) to solve for rcPhist
M ;b

yields,
rcPhist
M ;b

* +
¼

P hist
M ;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR xM
x0

P ðxÞdx
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
R xb
xb�1

P ðxÞdx
q ¼

P hist
M ;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
R xb
xb�1

PðxÞdx
q ; ð75Þ
which simplifies by using Eq. (55),
rcPhist
M ;b

* +
¼

ffiffiffiffiffiffiffiffiffi
P hist
M ;b

q
ffiffiffiffiffiffiffiffiffiffi
DxN

p . ð76Þ
Finally, Eq. (59) can be used to write the standard deviation in terms of the total number of histogram

bins,
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rcPhist
M ;b

* +
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MP hist

M ;b

N

s
. ð77Þ
Eqs. (77) and (55) can be used to simplify Eq. (72),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊhist

M k2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
N

XM
b¼1

Z xb

xb�1

P ðxÞdxþ
XM
b¼1

P 0ðxb�1=2Þ2

3M3
þO

1

M5

� �vuut . ð78Þ
The summation over all bins in the first term under the radical produces an integral over the entire dis-
tribution and evaluates to 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kÊhist

M k2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
N

þ
XM
b¼1

P 0ðxb�1=2Þ2

3M3
þO

1

M5

� �vuut . ð79Þ
Eq. (79) can then be written to leading order as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÊhist

M k2
D Er

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

M
N

� �
þO

1

M2

� �s
. ð80Þ
Comparing Eqs. (80) and (42) shows that statistical uncertainty has the same effect on both the FET and the
histogram tally, causing the 2-norm of the total error to diverge as order

ffiffiffiffiffiffiffiffiffiffiffi
M=N

p
for large values ofM. This

important result indicates that both methods behave qualitatively in a similar way. For any number of his-

tories N, there is an optimal value of M that allows the most information about the functional shape to be

obtained. Using a value of M that is larger than the optimal value will only result in the functional approx-

imation becoming contaminated by modes (or bins) that are not well converged.

The preceding derivations have all assumed that all of the bins in the histogram approximation have

equal width. With this equal width assumption, the 2-norm convergence for truncation error in the histo-

gram tally is 1/M for functions with a nonzero first derivative.
7. Numerical results for histogram convergence

Using the test distribution for P(x) given in Eq. (44), verification studies of the theoretical histogram

tally convergence rates were conducted. We examined the convergence rate of the 2-norm residual error

for histogram approximations using exact bin heights and different numbers of bins. For each histogram

bin, values were calculated with Eq. (55) and the residual errors were calculated with Eq. (57). The results
of this study, shown in Fig. 9, demonstrate that for M P 2, the residual error in the histogram approxima-

tion converges as O[1/M ], the exact rate predicted in Eq. (61).

We then included the effect of statistical uncertainty on the convergence rate of the histogram approx-

imation. Instead of calculating bin values directly, random samples were taken from the test distribution of

P(x) and tallied in the appropriate histogram bin. Bin values were then estimated by dividing the number of

samples scoring in each bin by the total number of samples times the bin width. The residual error between

the Monte Carlo histogram approximation and true distribution was calculated directly with Eq. (57).

The results, shown in Fig. 10, demonstrate that the convergence behavior of the truncation error behaves
qualitatively as predicted in Eq. (80). Like the FET, for fixed N, the histogram has an optimal number of

bins that will minimize the total residual error of the approximation. The optimal number of bins is approx-

imately 20 for the test distribution considered. For a histogram approximation using more than the optimal

number of bins, the residual error begins to increase as more bins are used.
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Fig. 9. Two norm measure of residual error for a histogram approximation to P(x) plotted against the number of histogram bins. A

1/M trend line is shown for comparative purposes, indicating the convergence rate.
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Fig. 10. Two norm measure of residual error for a stochastic histogram approximation to P(x) plotted against the number of

histogram bins used. Each histogram approximation was created using the same N = 10,000 samples from P(x).
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8. Discussion and comparison of results

We have already demonstrated, theoretically and numerically, that the FET and histogram approxima-

tions converge to the true distribution in qualitatively the same way as the approximation order is
increased.

To compare the FET and histogram residual errors, Figs. 5 and 10 are shown plotted together in Fig. 11

This figure demonstrates that the FET and histogram approximations have roughly the same convergence

behavior with respect to the approximation order M. Both methods show a reduction in residual error with

increasing order before reaching an optimal value of M that minimized the total error. Below this optimal

value the convergence is dominated by the truncation error inherent in each of the approximations. For

approximation orders greater than the optimal value, the residual error begins to increase due to statistical

noise in the system. In this case, the FET error is always less than the histogram error as M ! 1.
Fig. 11 illustrates that, for the trial distribution of P(x) selected, the FET is superior to the histogram

tally. For a 10,000 history calculation, the FET can achieve a smaller residual error than a histogram

approximation, for any order of approximation. Furthermore, the results show that a 4th or 5th order
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Legendre approximation to P(x) outperforms even the optimal histogram approximation. In this case, the

FET can clearly extract more information about the distribution P(x) than a histogram tally.

Although the FET is superior to the histogram tally for this specific example, it is not possible to claim this

will hold in general, because the accuracy of the final fit depends on the approximation technique that best

matches the shape, and properties, of the unknown function. The best approach for a given distribution is

the one that has the fastest truncation error convergence rate. For example, the histogram approximation is
best suited for discontinuous distributions (e.g. step distributions) or those with very sharp gradients.

On the other hand, estimating higher moments within these histogram bins may yield substantial

improvement in the results, allowing piecewise FET to do very well in situations where the analyst has a

priori knowledge regarding the location of discontinuities, such as at material boundaries in particle trans-

port applications [17]. For homogeneous systems, or any case where smoothly varying distributions are ex-

pected, a Legendre of Chebyshev FET approximation will most likely show large improvements over a

histogram tally.
9. Conclusions

We have examined the convergence properties of the FET to reconstruct the detailed distribution of

samples obtained during a Monte Carlo simulation. Derivations for the generalized FET estimators and

their variances were presented. A detailed analysis was performed to determine the rate at which a func-

tional expansion converges to the true distribution as the expansion order is increased. Theoretical results

demonstrate that this convergence behavior depends primarily on the smoothness of the true distribution,
but can also depend on the set of basis functions chosen for the expansion.

The initial convergence rate of the FET for a non-analytic function was shown to be algebraic, with order

determined by the algebraic index of convergence for the function. For analytic functions, the initial conver-

gence rate of the FET is exponential. Unfortunately, these convergence rates are contaminated by statistical

uncertainty with order O
ffiffiffiffiffiffiffiffiffiffiffi
M=N

ph i
, due to the stochastic nature of the Monte Carlo random walk process.

For large values of the ratioM/N, the statistical uncertainty begins to dominate and diminish the accuracy of

the highest order expansion coefficients. Due to these competing sources of error in the FET, the analysis
shows that, for a given number of histories run, there is an optimal expansion order that minimizes the

sum of the truncation error and statistical error in the final approximation. This optimal expansion order
proximation
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is a function of the number of particle histories used in the Monte Carlo calculation. The convergence of the

FET with respect to the number of particle histories remains O 1=
ffiffiffiffi
N

p� 
with fixed expansion order.

For comparative purposes, a similar convergence analysis was preformed for the traditional histogram

tally. With increasing numbers of bins, the convergence behavior of the histogram approximation was

shown to converge at a fixed rate of O[M�1], where M is the number of bins. As with the FET, statistical

error in the histogram tally increases with order O
ffiffiffiffiffiffiffiffiffiffiffi
M=N

ph i
, and consequently, there is an optimum num-

ber of histogram bins that minimizes the residual error of the approximation.

Numerical verification of the theoretical results was conducted with a sample distribution. The empirical

results agreed with the theory and demonstrated, for the sample distribution chosen, that the FET provided

a better approximation to the shape of the distribution than the histogram tally.

Although the FET and histogram tallies converge qualitatively in the same way, there are cases where

one method can clearly outperform the other. For distributions that are at least piecewise smooth, the faster

initial convergence rate of the FET can provide a better fit than a histogram approximation of the same

order. However, for distributions that are only piecewise continuous (or contain very steep gradients)
the histogram approximation may provide a better fit than the FET, especially if bin boundaries can be

located at or near the functional discontinuities. However, in cases where the locations of discontinuities

are known, a piecewise FET approximation can outperform both a histogram tally and a global FET

approximation. The judicious choice of one of these methods based on any prior knowledge of the un-

known distribution can ensure that the maximum amount of information is obtained from the Monte Carlo

simulation.

Although the FET offers many benefits, it is not without limitations. End-users of the method must al-

ways bear in mind that the technique produces a truncated approximation to the true solution. Therefore,
using an expansion with too few terms may produce an approximation that cannot resolve important fea-

tures of the distribution. Furthermore, for the basis sets considered, there is no guarantee that a functional

approximation will be positive everywhere, even though physics may require the true solution to be posi-

tive. In practice, such unphysical results have only been observed for distributions that one would not ex-

pect to be well represented by a series expansion in a set of continuous basis functions. Even in cases where

the functional approximation becomes negative (or otherwise unphysical), the errors are localized and do

not appear to significantly degrade the overall approximation [15,18].

Although the concepts of functional expansion tallies were published as early as 1975, each previous
implementation of the method was uniquely tailored for a specific application. This paper seeks to illustrate

that the FET is a powerful technique that may have far more applications than previously realized. The

FET is a promising new tool that may allow end-users to extract more information from Monte Carlo sim-

ulations than has been previously available with conventional tallies.
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